Overall Objective:

• Determine the influence of impact damage on fatigue life of γ - Ti-24Al-2Nb-2Cr simulated low pressure turbine blades.

Microstructural DOE Objectives:

- Determine the effect of energy, specimen thickness, hardness of projectile, and impact temperature on degree of cracking in γ TiAl.
- Down select a few impact conditions for follow-on fatigue study.

Microstructural Analysis DOE's

Phase

 \bigcirc -1.6 mm BB's (1/16")

H

-3.2 mm BB's (1/8")

Side Experiment

 \bigcirc -1.6 mm BB's (1/16")

Energy, ft-lb

- 260 °C (500 °F)
- Energy = 0.05 2 J (0.04 1.47 ft-lb)

Temperature, °C (°F)

- Thick Specimens
- Energy = 0.19 J (0.14 ft-lb)

650

(1200)

Crack Length Measurements

----- Frontside Major
----- Frontside Total

Backside StraightBackside Total

Front Side Damage

Low Energy Impacts, E= 0.05 J (0.04 ft-lb) 1.6 mm (1/16") Projectiles

Thin Specimen

Thick Specimen

Back Side Damage

Low Energy Impacts, E = 0.05 J (0.04 ft-lb)1.6 mm (1/16") Projectiles

Thin Specimen

*No back side cracks were detected on the surface of the thick specimens.

Front Side Damage

High Energy Impacts, E = 0.33 J (0.24 ft-lb) 1.6 mm (1/16") Projectiles

Thin Specimen

Thick Specimen

Backside Damage

High Energy Impacts, E = 0.33 J (0.24 ft-lb)1.6 mm (1/16") Projectiles

Thin Specimen

Thick Specimen

Projectile Hardness Had No Effect on Backside Straight Crack Length

Thick Specimens Exhibited Improved Impact Resistance Criterion: Backside Straight Crack Length

Large and Small Projectiles Resulted In Similar Damage at Equivalent Energies

- Hard and Soft Projectiles

Temperature Had No Effect on Backside Crack Length Thick Specimens Impacted at Medium Energy

Aim Accuracy Was Better for Large Projectiles

1.6 mm (1/16 ") Projectiles

 \overline{X} = 0.61 mm (0.024") C.I. = 0.28 mm (0.011") Aim = 0.51 mm (0.020")

3.2 mm (1/8") Projectiles

 \overline{X} = 0.69 mm (0.027") C.I. = 0.19 mm (0.008") Aim = 0.64 mm (0.025")

Effect of X Position on Front Total Crack Length

Thick Specimens Impacted at Medium EnergyHard and Soft BB's

X Position Was Not Correlated to Backside Straight Crack

- Thick Specimens Impacted at Medium Energy
- Hard and Soft BB's at 75, 500, and 1200 OF

Fig. 15

Preliminary Summary of Effects from DOE Models

Crack	Main Effects				Interactive Effects						Quadratic Effects			
Type	Е	t	Н	X	E*t	E*H	E*x	t*H	t*x	H*x	E^2	t^2	\mathbf{x}^2	R^2
Front	/	√		√							√	√		86
Major														
Front	√	√	√			√								87
Total														
Back	√	√	√ b				\checkmark	\checkmark	√				√	89
Straight														
Back	√	√	√ b		√				✓	✓	✓	√		88
Total ^a														

^a Statistician recommended square root transforms of data to achieve R² of 93% for Back Total Crack Length.

^b Trend of effect opposite than expected.

Summary

- 1. Energy had the largest effect on crack length.
- 2. Projectile hardness had little effect on impact damage.
- 3. The thin and medium thickness specimens exhibited similar impact resistance while the thick specimens had improved impact resistance.
- 4. Large and small projectiles resulted in similar damage at equivalent energies.
- 5. Front and backside crack lengths were not well correlated. It is unknown, at this time, which crack type will best correlate to fatigue strength.
- 6. Temperature had little effect on crack lengths.
- 7. Aim was more accurate for the large projectiles.
- 8. X position was generally modeled only as an interactive effect.

Conclusions

- The experimental impact conditions chosen produced a spectrum of damage from minor denting to major cracking.
- The actual damage tolerable for LPT blade application will be determined by a combination of fatigue testing and consideration of actual engine conditions.
- Low pressure turbine blades should be as thick as possible for improved impact resistance.
- With thickness held constant, the initial selection of impact variables can be down selected to energy for the follow-on fatigue study.
- Some variation in impact location can be tolerated, especially with the thick specimens.